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Abstract. We study non-monotone positive solutions of the second-order linear dif-
ferential equations: (p(t)x′)′ + q(t)x = e(t), with positive p(t) and q(t). For the first
time, some criteria as well as the existence and nonexistence of non-monotone positive
solutions are proved in the framework of some properties of solutions θ(t) of the cor-
responding integrable linear equation: (p(t)θ′)′ = e(t). The main results are illustrated
by many examples dealing with equations which allow exact non-monotone positive
solutions not necessarily periodic. Finally, we pose some open questions.
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1 Introduction

In recent years, mathematical models which admit non-monotone positive solutions pay at-
tention in various disciplines of the applied sciences. For instance, non-monotonic behaviour
of: the amplitude of harmonic oscillator driven with chirped pulsed force [9], the three-flavour
oscillation probability [1,10], the particle density in Bose–Einstein condensates with attractive
atom-atom interaction [2, 5, 14], the several kinds of cardiogenic oscillations [6], the structural
analysis of blood glucosa [4], the response function in a delayed chemostat model [19].

In the paper, we consider the second-order linear differential equation:

(p(t)x′)′ + q(t)x = e(t), t ≥ t0, (1.1)

where p, q, e ∈ C[t0, ∞), p(t) > 0, q(t) ≥ 0 for t ≥ t0, and x = x(t). By a solution of (1.1), we
mean a function x ∈ C1[t0, ∞) which satisfies p(t)x′(t) ∈ C1[t0, ∞) and (1.1) on [t0, ∞). We say
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that a function x(t) is (eventually) positive if x(t) > 0 for all t > t1 and some t1 ≥ t0 (where it
is not necessary, the word eventually is avoided). Also, a smooth x(t) is a non-monotone function
on [t0, ∞) (or shortly said, x(t) is non-monotonic on [t0, ∞)) if x′(t) is a sign-changing function
on [t0, ∞), that is, for each t > t0, there exist t+, t− ∈ [t, ∞) such that x′(t+) > 0 and x′(t−) < 0
(in the literature, such a function x(t) is also called weakly oscillatory, see for instance [3, 7]). It
is easy to show that:

lim inf
t→∞

x(t) < lim sup
t→∞

x(t) implies x(t) is non-monotonic on [t0, ∞), (1.2)

which is used here as a criterion for the non-monotonic behaviour of continuous functions.
The opposite claim to (1.2) in general does not hold, for instance: x(t) = e−t(cos t + sin t) is a
non-monotone function but its limits inferior and superior are equal.

Many classes of homogeneous linear differential equations of second-order do not allow
any non-monotone positive solution. For instance, equations with constant coefficients: x′′ +
µx′ + λx = 0, where µ, λ ∈ R, and the Euler equation (Eµλ): t2x′′ + µtx′ + λx = 0, because
they only admit either oscillatory solutions (∃tn → ∞ such that x(tn) = 0) or monotone
solutions (x′(t) ≥ 0 or x′(t) ≤ 0 on (t0, ∞)). On the other hand, two simple constructions
of the non-homogeneous term e(t) 6≡ 0 are possible such that equation (1.1) allows non-
monotone positive solutions on [t0, ∞):

1) for a given non-monotone positive function x0(t), let e(t) = (p(t)x′0)
′ + q(t)x0; it means

that x0(t) is a particular solution of (1.1) and thus, in such a case, (1.1) allows at least one
non-monotone positive solution on [t0, ∞); for instance, letting x0(t) = 2 + sin t, then for
e(t) = 2λ + (λ − 1) sin t + µ cos t, the equation x′′ + µx′ + λx = e(t) admits x0(t) as a non-
monotone positive solution;

2) let the homogeneous part of (1.1): (p(t)x′)′ + q(t)x = 0 admit infinitely many bounded
oscillatory solutions xh(t) and let x0(t) ≡ c0 > 0 be a large enough particular solution of
(1.1); then for e(t) = (p(t)x′0)

′+ q(t)x0 = q(t)c0, the equation (1.1) allows infinitely many non-
monotone positive solutions x(t) = xh(t) + c0; for instance, if µ ≥ 1 and D = (µ− 1)2 − 4λ <

0, then equation (Eµλ) admits bounded oscillatory solutions xh(t) = t(1−µ)/2(c1 cos(ρ ln t) +
c2 sin(ρ ln t)), where ρ =

√
|D|/2, c1, c2 ∈ R, 0 < c2

1 + c2
2 < 4; if we now chose for x0(t) ≡ 2 and

e(t) = 2λ, then the corresponding non-homogeneous equation (Eµλe): t2x′′ + µtx′ + λx = e(t)
allows infinitely many non-monotone positive solutions in the form x(t) = xh(t) + x0(t);
obviously such a construction of e(t) from given p(t), q(t), and x0(t) does not hold if µ < 1,
D < 0 (unbounded oscillatory solutions) and µ ∈ R, D ≥ 0 (monotone solutions).

However, in our main problems of the paper, the non-homogeneous part e(t) is not a point
of any construction, but e(t) is an arbitrary given function just as p(t) and q(t).

Main problems. 1) Find sufficient and necessary conditions on arbitrary given p(t), q(t), and e(t),
such that every positive solution of (1.1) is non-monotonic. 2) Prove the existence of at least one
non-monotone positive solution of (1.1).

Taking into account the preceding observation, we can positively answer to the main
problem concerning the concrete Euler equation: t2x′′ + µtx′ + λx = 2λ, where µ ≥ 1 and
λ > (µ− 1)2/4.

The purpose of this paper is to give some answers to the main problem in the framework
of non-monotonic behaviour of the function θ = θ(t), θ ∈ C2(t0, ∞), which is a solution of the
next integrable second-order linear differential equation:

(p(t)θ′)′ = e(t), t ≥ t0. (1.3)
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Figure 1.1: thick line: x(t) = tγ
(
d + sin(ω ln t)

)
for γ = −1/6, d = 2 and

ω = 12, dashed line: x(t) = ln t
(
2 + sin t

)
, t ≥ t0 > 1.

The most simple model for the linear equation (1.1) having p(t), q(t), e(t), and x(t) that
satisfy all required assumptions and conclusions of this paper is:

(tax′)′ + t−bx = e(t), t ≥ t0 > 0. (1.4)

For some a, b and e(t), the equation (1.4) allows exact non-monotone positive not necessarily
periodic solutions x(t), by which we can illustrate our main results below: two different cases
a > 1, a + b > 2 (bounded x(t)) and a ≤ 1, a + b > 2 (unbounded x(t)) are considered in Sub-
sections 2.1 and 2.2. Figure 1.1 shows the graphs of two examples of non-monotone positive
(non-periodic) functions x(t) = α(t)

(
d + S(ω(t))

)
, where the amplitude α(t) is positive, the

frequency ω(t) goes to infinity as t goes to infinity, and S(τ) is a continuous periodic function.
In Section 2, we give some relations for lower and upper limits of x(t) and θ(t) as the solu-

tions of respectively (1.1) and (1.3), in two different cases: bounded and possible unbounded
solutions. It will ensure some conditions on θ(t) which imply the non-monotonicity of posi-
tive solutions of x(t). In Sections 3 and 4, some conditions on θ(t) are involved such that the
main equation (1.1) allows or not the positive non-monotone solutions. Finally in Section 5,
we suggest some open problems for further study on this subject.

Our approach here to non-monotone positive solutions of second-order differential equa-
tions is quiet different than in [13], where (without limits inferior and superior of x(t)) the
sign-changing property of x′(t) of positive solutions x(t) of a class of nonlinear differential
equations has been studied by means of a variational criterion. On the existence of positive
periodic solutions as a particular case of non-monotonic behaviour of the second-order linear
differential equations, see for instance [18, Section 2], [11, Lemma 2.2] and references cited
therein.

2 Criteria for non-monotonicity of solutions

Since the right-hand side of both equations (1.1) and (1.3) are the same, we can derive the next
relation between all their solutions.
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Proposition 2.1. Let x(t) and θ(t) be two smooth functions on [t0, ∞) that satisfy the following
equality:

θ(t) = x(t) +
∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds + C1

∫ t

t0

1
p(s)

ds + C2, (2.1)

with arbitrary constants C1, C2 ∈ R. Then, θ(t0) = x(t0) and θ′(t0) = x′(t0) if and only if C1 =

C2 = 0. Moreover, θ(t) is a solution of equation (1.3) if and only if x(t) is a solution of equation (1.1).

In what follows, we consider two rather different cases: the bounded and not necessarily
bounded solutions of equation (1.1).

2.1 Non-monotone positive bounded solutions

In this subsection, the main assumption on p(t) and q(t) is:∫ ∞

t0

1
p(s)

∫ s

t0

q(r)drds < ∞. (2.2)

According to (2.1)–(2.2), we easily derive:

Lemma 2.2. Supposing (2.2), let x(t) and θ(t) be two smooth functions on [t0, ∞) that satisfy (2.1)
with C1 = C2 = 0, and let 0 ≤ x(t) ≤ M on [t0, ∞) for some M ∈ R, M > 0. Then 0 ≤ θ(t) ≤ N
on [t0, ∞) for some N ∈ R, N > 0. Moreover:

i) lim inft→∞ x(t) = lim supt→∞ x(t) ⇐⇒ lim inft→∞ θ(t) = lim supt→∞ θ(t);

ii) if θ′(t) is bounded and

lim
t→∞

1
p(t)

∫ t

t0

q(r)dr = 0, (2.3)

then lim inft→∞ x′(t) = lim inft→∞ θ′(t), lim supt→∞ x′(t) = lim supt→∞ θ′(t);

iii) the statement ii) still holds if (2.3) is replaced with

1
p(t)

∫ t

t0

q(r)dr is decreasing on [t0, ∞). (2.4)

In general, assumption (2.2) does not imply (2.3), but assumptions (2.2) and (2.4) together
imply (2.3). It is easy to check that, for all a, b ∈ R such that a > 1 and a + b > 2, the
coefficients p(t) = ta and q(t) = t−b, t ≥ t0 > 0, satisfy both conditions (2.2) and (2.3).

If θ′(t) is a sign-changing function on [t0, ∞), then from equality (2.1) we cannot say any-
thing about the sign of the function x′(t). However, according to (1.2), from Lemma 2.2 we can
derive the following criteria for non-monotonicity of positive bounded solutions of equation
(1.1).

Theorem 2.3 (Criterion for non-monotonicity of solution). Let us assume (2.2). If every solution
θ(t) of equation (1.3) satisfies

lim inf
t→∞

θ(t) < lim sup
t→∞

θ(t), (2.5)

then every positive bounded solution x(t) of equation (1.1) satisfies

lim inf
t→∞

x(t) < lim sup
t→∞

x(t). (2.6)
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In particular, x(t) is non-monotonic on [t0, ∞). Moreover, if (2.3) holds and θ′(t) is bounded, then

lim inf
t→∞

θ′(t) < lim sup
t→∞

θ′(t) implies lim inf
t→∞

x′(t) < lim sup
t→∞

x′(t),

lim inf
t→∞

θ′(t) = lim sup
t→∞

θ′(t) implies lim inf
t→∞

x′(t) = lim sup
t→∞

x′(t).

We illustrate this result with the help of equation (1.4).

Example 2.4. Let a = 2, b = 1 and

e(t) = tγ

[
2γ(γ + 1) + (2γ + 1) cos(ln t) + (γ2 + γ− 1) sin(ln t) +

1
t
(2 + sin(ln t))

]
,

where γ ∈ (−
√

3/3, 0]. Since a = 2 > 1 and a + b = 3 > 2, the assumption (2.2) is satisfied.
By a direct integration of equation (1.3), we can see that the set of all solutions θ(t) of (1.3) is
the next two parametric family of functions:

θ(t) =
∫ t

t0

1
p(s)

∫ s

t0

e(r)drds + c1

∫ t

t0

1
p(s)

ds + c2, (2.7)

where the parameters c1, c2 ∈ R satisfy: c1 = θ′(t0)p(t0) and c2 = θ(t0). Now, from (2.7) it
follows:

θ(t) = c1 + tγ
(
2 + sin(ln t)

)
+

c2

t
+

1
t1−γ

[
C1 cos(ln t) + C2 sin(ln t) + C3

]
,

where c1, c2 ∈ R and the real constants C1, C2 and C3 only depend on γ. Next, we have:
if γ < 0, then lim inft→∞ θ(t) = lim supt→∞ θ(t) = c1, and if γ = 0, then lim inft→∞ θ(t) =

c1 + 1 < c1 + 3 = lim supt→∞ θ(t). Thus, if γ = 0, then condition (2.5) is fulfilled, and
by Theorem 2.3, every positive bounded solution x(t) of equation (1.4) is non-monotonic on
[t0, ∞). Next, since a = 2 and b = 1, we especially have

1
p(t)

∫ t

t0

q(r)dr =
1
t2 ln

t
t0

,

and thus, the extra assumption (2.3) is also satisfied in this case. Finally, it is worth to mention
that the function x(t) = tγ

(
2 + sin(ln t)

)
is an exact non-monotone positive solution of equa-

tion (1.4) with such a, b and e(t). We leave to the reader to make a related example in which
the solution x(t) = tγ

(
d + sin(ω ln t)

)
is considered, where γ ∈ (−

√
3/3, 0], d > 1 and ω > 0.

If q(t) 6≡ 0, then assumption (2.2) implies 1/p ∈ L1(t0, ∞). By direct integration of equation
(1.1), we obtain

x(t) +
∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds + c1

∫ t

t0

1
p(s)

ds + c2 =
∫ t

t0

1
p(s)

∫ s

t0

e(r)drds,

for some c1, c2 depending on t0. Since in the subsection we are working with positive bounded
solutions x(t), from the previous equality and (2.2), we have:

lim inf
t→∞

x(t) +
∫ ∞

t0

1
p(s)

∫ s

t0

q(r)x(r)drds + c1

∫ ∞

t0

1
p(s)

ds + c2

= lim inf
t→∞

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds, (2.8)
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lim sup
t→∞

x(t) +
∫ ∞

t0

1
p(s)

∫ s

t0

q(r)x(r)drds + c1

∫ ∞

t0

1
p(s)

ds + c2

= lim sup
t→∞

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds. (2.9)

Hence, from (2.8) and (2.9), we can easily prove the next two simple results.

Theorem 2.5. Let q(t) 6≡ 0 and assume (2.2).

i) If

−∞ < lim inf
t→∞

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds < lim sup
t→∞

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds < ∞, (2.10)

then every positive bounded solution x(t) of equation (1.1) satisfies (2.6), and so, x(t) is non-
monotonic on [t0, ∞).

ii) If there exists a (particular) positive bounded solution x0(t) of equation (1.1) satisfying (2.6), then
every positive bounded solution x(t) of (1.1) also satisfies (2.6), and so, x(t) is non-monotonic on
[t0, ∞).

As pointed out above, the coefficients p(t) = ta and q(t) = t−b, t ≥ t0 > 0, satisfy condition
(2.2) if a > 1 and a + b > 2. Moreover, we have q(t) 6≡ 0 and so, we may use Theorem 2.5.

Example 2.6. Let a > 1, a + b > 2, t0 > 0, and ω > 0. If we chose for e(t) = (ta cos(ωt))′

or e(t) = (ta−1 sin(ω ln t))′ (non-periodic case), then the required condition (2.10) is fulfilled,
because: ∫ t

t0

1
sa

∫ s

t0

(
ra cos(ωr)

)′drds =
1
ω

sin(ωt) + c1 + c2t1−a,∫ t

t0

1
sa

∫ s

t0

(
ra−1 sin(ω ln r)

)′drds = − 1
ω

cos(ω ln t) + c1 + c2t1−a,

for some c1, c2 ∈ R, and in both cases of e(t), we have:

lim inf
t→∞

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds = − 1
ω

+ c1

<
1
ω

+ c1 = lim sup
t→∞

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds.

Therefore, by Theorem 2.5 (i) we conclude that in these cases of e(t), all positive bounded
solutions of equation (1.4) are non-monotonic on [t0, ∞).

The previous example can be generalised to the case when e(t) is the first derivative of an
oscillating (chirped) function with general frequency ω(t).

Example 2.7. Let us assume (2.2) and 1/p ∈ L1(t0, ∞). Let ω(t) be a positive increasing
frequency such that limt→∞ ω(t) = ∞ and S(τ) be a periodic smooth function on R. For
instance, ω(t) = ω0t, ω(t) = ω0 ln t, ω0 > 0 and S(τ) = sin τ, S(τ) = cos τ. Let us now
choose e(t) = (p(t)ω′(t)S′(ω(t)))′. Then condition (2.10) is fulfilled, because:∫ t

t0

1
p(s)

∫ s

t0

(
p(r)ω′(r)S′(ω(r))

)′drds = S(ω(t)) + c1 + c2

∫ t

t0

1
p(s)

ds,
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for some c1, c2 ∈ R, and hence,

lim inf
t→∞

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds = lim inf
τ→∞

S(τ) + c1 + c2

∫ ∞

t0

1
p(s)

ds

< lim sup
τ→∞

S(τ) + c1 + c2

∫ ∞

t0

1
p(s)

ds

= lim sup
t→∞

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds.

Now, by Theorem 2.5 (i) we conclude that for such a class of e(t), all positive bounded solu-
tions of equation (1.1) are non-monotonic on [t0, ∞).

Now, in the next two examples, we illustrate Theorem 2.5 (ii).

Example 2.8. Let a = b = 2 and e(t) be given by

e(t) = cos(ln t)− sin(ln t) +
1
t2 (2 + sin(ln t)). (2.11)

Because of ln t, the frequency in e(t) is varying in time and hence, such e(t) is often called as
oscillating chirped force, see for instance in [9] and about the chirps, in [15, 16]. Since a = 2 > 1
and a + b = 4 > 2, the coefficients p(t) = t2 and q(t) = t−2 satisfy assumption (2.2) and
1/p ∈ L1(t0, ∞). Furthermore, the function x(t) = 2 + sin(ln t) is an exact positive bounded
solution of (1.4) satisfying required condition (2.6). Hence, by Theorem 2.5 (ii) we conclude
that all positive bounded solutions of equation (1.4), with e(t) from (2.11), are non-monotonic
on [t0, ∞).

Example 2.9. Let assume (2.2) and 1/p ∈ L1(t0, ∞). Let the functions ω(t) and S(τ) be as
in Example 2.7. If e(t) = (p(t)ω′(t)S′(ω(t)))′ + q(t)(d + S(ω(t)), where d ∈ R such that
d > − lim infτ→∞ S(τ), then x0(t) = d + S(ω(t)) is an exact positive bounded solution of
equation (1.1) satisfying (2.6). Therefore, by Theorem 2.5 (ii) we conclude that all positive
bounded solutions of equation (1.1), with such a class of e(t), are non-monotonic on [t0, ∞).

Remark 2.10. An important particular class of equations (1.1) is the Euler nonhomogeneous
equation:

x′′ +
µ

t
x′ +

λ

t2 x = f (t), t > 0, (2.12)

where µ ∈ R and λ > 0. It can be easily rewritten in the form of equation (1.1):
(
tµx′

)′
+

λtµ−2x = tµ f (t), t > 0. If we set a = µ and b = 2− µ, by the same argument as for the
coefficients of the equation (1.4), one can show that p(t) = ta and q(t) = λt−b satisfy the
assumption (2.2) provided a > 1 and a + b > 2. But, the last inequality is not possible in
this case, because a + b = µ + 2− µ = 2. Hence, the assumption (2.2) does not hold for all
µ ∈ R and λ > 0 and consequently, we cannot apply the criterion from Theorems 2.3 and 2.5
to equation (2.12), see an open problem in Section 5.1.

2.2 Non-monotone positive not necessarily bounded solutions

Since p(t) > 0, we can define the next function,

P(t) =
∫ t

t0

1
p(s)

ds, t ≥ t0, (2.13)



8 M. Pašić and S. Tanaka

and we suppose that:

lim
t→∞

P(t) = ∞, (2.14)∫ ∞

t0

P(t)q(t)dt < ∞. (2.15)

At the first, we prove the following technical result.

Proposition 2.11. Let x(t) be a continuous function such that 0 ≤ x(t)
P(t) ≤ M for all t ≥ t0 and some

M > 0. If assumptions (2.14) and (2.15) hold, then there exists a constant L ∈ [0, ∞) such that

L = lim
t→∞

1
P(t)

∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds. (2.16)

Moreover, if
lim
t→∞

[p(t)P(t)] = ∞, (2.17)

then

lim
t→∞

(
1

P(t)

∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds
)′

= 0. (2.18)

Proof. We introduce two auxiliary functions Xp(t) and Xq(t) defined by:

Xp(t) =
∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds and Xq(t) =
∫ t

t0

q(r)x(r)dr.

If q(t) ≡ 0 or x(t) ≡ 0, then the conclusion of this proposition obviously holds. Thus, we
may assume q(t) ≥ 0, q(t) 6≡ 0 and x(t) ≥ 0, x(t) 6≡ 0. Hence, the functions Xp(t) and
Xq(t) are positive, Xp(t) is increasing and Xq(t) is nondecreasing. Moreover, with the help of
assumptions x(r)

P(r) ≤ M and (2.15), we have

Xq(t) =
∫ t

t0

P(r)q(r)
x(r)
P(r)

dr ≤ M
∫ ∞

t0

P(r)q(r)dr < ∞, t ≥ t0.

Therefore, there exists Lq ∈ (0, ∞) such that Lq = limt→∞ Xq(t). In particular, Xq(t) ≥ Lq/2
on [t1, ∞) for some t1 ≥ t0, and hence

Xp(t) ≥
∫ t

t1

1
p(s)

Xq(s)ds ≥
Lq

2

∫ t

t1

1
p(s)

ds =
Lq

2
[P(t)− P(t1)],

which implies limt→∞ Xp(t) = ∞. Hence, the L’Hospital rule yields that:

lim
t→∞

Xp(t)
P(t)

=
∞
∞

= lim
t→∞

X′p(t)
P′(t)

= lim
t→∞

Xq(t) = Lq,

and thus, the desired statement (2.16) is shown. Finally, from previous equality we especially
conclude that limt→∞

∣∣Xq(t)−
Xp(t)
P(t)

∣∣ = |Lq − Lq| = 0 and so,∣∣∣∣∣
(

Xp(t)
P(t)

)′∣∣∣∣∣ = 1
P(t)p(t)

∣∣∣∣Xq(t)−
Xp(t)
P(t)

∣∣∣∣→ 0,

as t→ ∞, where (2.17) is used. It proves (2.18).
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A model equation for (1.1) with the coefficients p(t) and q(t) satisfying required assump-
tions (2.14), (2.15) and (2.17) is equation (1.4), which is shown in the next example.

Example 2.12. Let p(t) = ta and q(t) = t−b, where a ≤ 1 and a + b > 2. If a = 1 then
P(t) = ln t− ln t0 → ∞ as t → ∞. If a < 1, then P(t) = (t1−a − t1−a

0 )/(1− a) → ∞ as t → ∞.
Hence, (2.14) is satisfied for a ≤ 1. Since a ≤ 1 and b > 2− a imply b > 1, in both cases of
P(t), we have: ∫ ∞

t0

P(t)q(t)dt =
t2−a−b
0

(a + b− 2)(b− 1)
< ∞,

and thus, (2.15) is also satisfied. Moreover, p(t)P(t) = t(ln t− ln t0) → ∞ (the case of a = 1)
and p(t)P(t) = (t− tat1−a

0 )/(1− a)→ ∞ as t→ ∞ (the case of a < 1), which show that (2.17)
is satisfied too.

Lemma 2.13. Supposing (2.14) and (2.15), let x(t) and θ(t) be two smooth functions on [t0, ∞) that
satisfy (2.1) with C1 = C2 = 0, and 0 ≤ x(t)

P(t) ≤ M for all t ≥ t0 and some M ∈ R, M > 0. Then

0 ≤ θ(t)
P(t) ≤ N for all t ≥ t0 and some N ∈ R, N > 0, and moreover:

i) lim inft→∞
x(t)
P(t) = lim supt→∞

x(t)
P(t) ⇔ lim inft→∞

θ(t)
P(t) = lim supt→∞

θ(t)
P(t) ;

ii) if p(t) and q(t) additionally satisfy (2.17), and
( θ(t)

P(t)

)′ is bounded, then

lim inf
t→∞

( x(t)
P(t)

)′
= lim inf

t→∞

( θ(t)
P(t)

)′
and lim sup

t→∞

( x(t)
P(t)

)′
= lim sup

t→∞

( θ(t)
P(t)

)′
.

The previous lemma plays an essential role in proof of the following main result of this
subsection, which is a criterion for the non-monotonicity of positive not necessarily bounded
solutions.

Theorem 2.14 (Criterion for non-monotonicity of solutions). Let us assume (2.14) and (2.15). If
every solution θ(t) of equation (1.3) satisfies

lim inf
t→∞

θ(t)
P(t)

< lim sup
t→∞

θ(t)
P(t)

, (2.19)

then every positive solution x(t) of equation (1.1), for which x(t)
P(t) is bounded, satisfies

lim inf
t→∞

x(t)
P(t)

< lim sup
t→∞

x(t)
P(t)

. (2.20)

In particular, x(t)
P(t) is non-monotonic on [t0, ∞). Moreover, if we additionally suppose (2.17), and

−∞ < lim inf
t→∞

( θ(t)
P(t)

)′
< 0 < lim sup

t→∞

( θ(t)
P(t)

)′
< ∞, (2.21)

then x(t) is non-monotonic on [t0, ∞).

Remark 2.15. In general, the condition (2.20) does not imply that the x(t) is non-monotonic
on [t0, ∞). For example, if p(t) = e−t, then P(t) = et − et0 ; it is clear that the function
x(t) = et(2 + sin t) satisfies (2.20), because

0 ≤ lim inf
t→∞

x(t)
P(t)

= 1 < 3 = lim sup
t→∞

x(t)
P(t)

< ∞;

but, at the same time, we have x′(t) = et(2 + sin t + cos t) > 0 for all large enough t. Thus,
x(t) is not non-monotonic on [t0, ∞) even if (2.20) holds.
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However, in the next lemma, we give an additional condition on x(t) such that (2.20)
implies the non-monotonicity of x(t) on [t0, ∞), which is together with Lemma 2.13 used in
the proof of Theorem 2.14.

Lemma 2.16. Let assume (2.17). Let x(t) be a positive smooth function for which x(t)
P(t) is bounded. If

x(t) satisfies (2.20) and

lim inf
t→∞

( x(t)
P(t)

)′
< 0 < lim sup

t→∞

( x(t)
P(t)

)′
, (2.22)

then x(t) is non-monotonic on [t0, ∞).

We illustrate the preceding results with the help of equation (1.4).

Example 2.17. Let a = 1, b = 2, t0 > 0, and

e(t) = 2 cos t + ln t cos t− t ln t sin t +
ln t
t2 (2 + sin t), t ≥ t0. (2.23)

Since p(t) = t, q(t) = t−2, and a + b = 1 + 2 = 3 > 2, by Example 2.12 it follows that
assumptions (2.14), (2.15) and (2.17) are satisfied. Next, from equality (2.7) and (2.23), we
derive that θ(t) = c1 ln t + c2 + I1(t) + I2(t), where c1, c2 ∈ R and

I1(t) =
∫ t

t0

1
s

∫ s

t0

(2 cos r + ln r cos r− r ln r sin r)drds,

I2(t) =
∫ t

t0

1
s

∫ s

t0

ln r
r2 (2 + sin r)drds.

Thus, 
θ(t)
P(t) =

c1 ln t
P(t) + c2

P(t) +
I1(t)
P(t) +

I2(t)
P(t) ,( θ(t)

P(t)

)′
=
( c1 ln t

P(t)

)′
+
( c2

P(t)

)′
+
( I1(t)

P(t)

)′
+
( I2(t)

P(t)

)′. (2.24)

Since: 2 cos r + ln r cos r− r ln r sin r = [r[ln r(2 + sin r)]′]′, we have

I1(t) =
∫ t

t0

1
s

∫ s

t0

[
r[ln r(2 + sin r)]′

]′drds = ln t(2 + sin t) + c3 ln t + c4,

where c3, c4 ∈ R. Therefore,lim inft→∞
I1(t)
P(t) = 1 + c3 < 3 + c3 = lim supt→∞

I1(t)
P(t)

lim inft→∞

(
I1(t)
P(t)

)′
= −1 < 0 < 1 = lim supt→∞

(
I1(t)
P(t)

)′
.

(2.25)

Next, in particular for x(t) = ln t (2 + sin t), p(t) = t, P(t) = ln t− ln t0, and q(t) = t−2,
from Proposition 2.11 we obtain the existence of an L ∈ [0, ∞) such that

lim
t→∞

I2(t)
P(t)

= L and lim
t→∞

( I2(t)
P(t)

)′
= 0. (2.26)

Hence, from (2.24), (2.25) and (2.26) we derive:
lim inft→∞

θ(t)
P(t) = c1 + 1 + c3 + L < c1 + 3 + c3 + L = lim supt→∞

θ(t)
P(t) ,

lim inft→∞

(
θ(t)
P(t)

)′
= −1 < 0 < 1 = lim supt→∞

(
θ(t)
P(t)

)′
,



Non-monotone positive solutions 11

and thus, θ(t) satisfies the desired conditions (2.19) and (2.21). Therefore, we may apply
Theorem 2.14 to equation (1.4) with a = 1, b = 2 and e(t) from (2.23), and conclude that every
its positive solution x(t), for which x(t)/P(t) is bounded, is a non-monotonic on [t0, ∞).
Furthermore, one can check that the function x(t) = ln t (2 + sin t) is an exact non-monotone
positive unbounded solution of (1.4) satisfying (2.20).

The previous example could be generalized to

e(t) = ω′(t)S′(ω(t)) +
[
p(t)P(t)ω′(t)S′(ω(t))

]′
+ q(t)P(t)[d + S(ω(t))],

where ω(t) is a positive increasing frequency and S(τ) is a smooth periodic function such
that lim infτ→∞ S′(τ) < 0 < lim supτ→∞ S′(τ), limt→∞ ω(t) = ∞ and limt→∞ ω′(t) ∈ (0, ∞). In
this case, x(t) = P(t)[d + S(ω(t))] is a particular unbounded positive non-monotone solution
of equation (1.1). The details are left to the reader.

Remark 2.18. In Remark 2.10 it is mentioned that the coefficients of the Euler type equation
(2.12) do not satisfy the condition a + b > 2, which causes an impossibility to apply Theo-
rem 2.3 to equation (2.12). This is the same with Theorem 2.14 and hence, an open problem
in Section 5.1 is posed.

2.3 The proofs of main results of the previous subsections

Proof of Proposition 2.1. Differentiating equality (2.1), and multiplying with p(t), and again dif-
ferentiating such obtained equality, we derive equality: (p(t)θ′(t))′ = (p(t)x′(t))′ + q(t)x(t),
which proves this proposition.

Proof of Lemma 2.2. For arbitrary two functions θ(t) and x(t), let equality (2.1) hold with C1 =

C2 = 0. Let G(t) be a new auxiliary function defined by:

G(t) :=
∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds ≥ 0, t ≥ t0.

From equality (2.1), the assumptions 0 ≤ x(t) ≤ M on [t0, ∞) and (2.2), we conclude that G(t)
is increasing on [t0, ∞) and:

θ(t) = x(t) + G(t), 0 ≤ G(t) ≤ M
∫ ∞

t0

1
p(s)

∫ s

t0

q(r)drds, t ≥ t0. (2.27)

In particular,

0 ≤ θ(t) ≤ M
(

1 +
∫ ∞

t0

1
p(s)

∫ s

t0

q(r)drds
)

,

that is, θ(t) is also a positive bounded function on [t0, ∞). Moreover, there exists L ∈ R, L > 0,
such that L = limt→∞ G(t), and with θ(t) = x(t) + G(t), it shows that

lim inf
t→∞

θ(t) = lim inf
t→∞

x(t) + L and lim sup
t→∞

θ(t) = lim sup
t→∞

x(t) + L.

Now, these equalities prove Lemma 2.2 (i).
Next, from (2.2), (2.3) and 0 ≤ x(t) ≤ M on [t0, ∞), we easily conclude that

0 ≤ G′(t) ≤ M
p(t)

∫ t

t0

q(r)dr ≤ M1, t ≥ t0, and lim
t→∞

G′(t) = 0. (2.28)
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From (2.27), it follows θ′(t) = x′(t) + G′(t). Since x′(t) = θ′(t)− G′(t) and θ′(t) is supposed
to be bounded function, that is, c1 ≤ θ′(t) ≤ c2 for some c1, c2 ∈ R, we have: c1−M1 ≤ θ′(t)−
G′(t) = x′(t) ≤ θ′(t) ≤ c2, and thus, x′(t) is bounded too. Now, (2.28) proves Lemma 2.2 (ii).

Next, for the function f (t) = M
p(t)

∫ t
t0

q(r)dr, from (2.2) and (2.4), we have f ∈ C[t0, ∞) ∩
L1(t0, ∞), f (t) ≥ 0 and f (t) is decreasing on [t0, ∞). It shows that limt→∞ f (t) = 0, and thus,
assumption (2.3) holds in this case too. Hence, Lemma 2.2 (ii) proves Lemma 2.2 (iii).

Proof of Theorem 2.3. Let x(t) be a positive bounded solution of equation (1.1). Let θ(t) be a
function satisfying θ(t0) = x(t0), θ′(t0) = x′(t0), and equality (2.1). In such a case, by Propo-
sition 2.1 we know that (2.1) holds with C1 = C2 = 0 and θ(t) is a solution of equation (1.3).
Now, assumption (2.5) and Lemma 2.2 (i) prove that x(t) satisfies the desired inequality (2.6).
This together with (1.2) shows that x(t) is non-monotonic on [t0, ∞). The rest of Theorem 2.3
immediately follows from Lemma 2.2 (ii).

Proof of Theorem 2.5. The first conclusion of this theorem immediately follows from (2.8), (2.9),
and (2.10). Next, let x0(t) be a positive bounded solution of equation (1.1) satisfying (2.6).
Putting such x0(t) into (2.8) and (2.9), we conclude that the condition (2.10) is fulfilled. Hence,
we may use Theorem 2.5 (i), which proves the second part of this theorem.

Proof of Lemma 2.13. Firstly, from (2.1) with C1 = C2 = 0, we have:

θ(t)
P(t)

=
x(t)
P(t)

+
1

P(t)

∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds. (2.29)

Then from (2.29), x(r) = x(r)
P(r)P(r), and 0 ≤ x(t)

P(t) ≤ M, we derive:

0 ≤ θ(t)
P(t)

≤ M(1 + M1) < ∞, t ∈ [t0, ∞),

as well as by Proposition 2.11, there exists L ∈ [0, ∞) such that

L = lim
t→∞

1
P(t)

∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds.

Now with the help of (2.29), we deduce:

lim inf
t→∞

θ(t)
P(t)

= lim inf
t→∞

x(t)
P(t)

+ L and lim sup
t→∞

θ(t)
P(t)

= lim sup
t→∞

x(t)
P(t)

+ L,

from which the proof of Lemma 2.13 (i) immediately follows. Also, from (2.29) we have:

( θ(t)
P(t)

)′
=
( x(t)

P(t)

)′
+

(
1

P(t)

∫ t

t0

1
p(s)

∫ s

t0

q(r)x(r)drds
)′

.

According to (2.18) and since
( θ(t)

P(t)

)′ is supposed to be bounded, we conclude that
( x(t)

P(t)

)′ is
also bounded and

lim inf
t→∞

( θ(t)
P(t)

)′
= lim inf

t→∞

( x(t)
P(t)

)′
and lim sup

t→∞

( θ(t)
P(t)

)′
= lim sup

t→∞

( x(t)
P(t)

)′
,

which prove Lemma 2.13 (ii).
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Proof of Lemma 2.16. Let P(t) be defined in (2.13) and x(t) be arbitrary function satisfying all
assumptions of this lemma. We define ϕ(t) = x(t)/P(t). Then the assumptions (2.20) and
(2.22) can be rewritten in the form:0 ≤ lim inft→∞ ϕ(t) < lim supt→∞ ϕ(t) < ∞,

lim inft→∞ ϕ′(t) < 0 < lim supt→∞ ϕ′(t).
(2.30)

Since x′(t) = P′(t)ϕ(t) + P(t)ϕ′(t) = ϕ(t)
p(t) + P(t)ϕ′(t), we have

x′(t)
P(t)

=
ϕ(t)

p(t)P(t)
+ ϕ′(t). (2.31)

Therefore, from (2.30), (2.31), and assumption (2.17), we obtain

lim inf
t→∞

x′(t)
P(t)

= lim inf
t→∞

ϕ′(t) < 0 < lim sup
t→∞

ϕ′(t) = lim sup
t→∞

x′(t)
P(t)

,

and hence x′(t) is a sign-changing function, which shows that x(t) is a non-monotone positive
function on [t0, ∞).

Proof of Theorem 2.14. The first part of this theorem is very similar to Theorem 2.3 and so, its
proof is leaved to the reader. Next, according to the assumptions of the second part of this
theorem, we my apply Lemma 2.13 (ii) which together with assumption (2.21) ensure that
every positive solution x(t) of equation (1.1) satisfies the required condition (2.22). Now,
Lemma 2.16 proves that x(t) is non-monotonic on [t0, ∞).

3 Existence of positive non-monotone solutions

Next, on the coefficients p(t) and q(t) we involve the following conditions:∫ ∞

t0

q(t)dt < ∞, (3.1)∫ ∞

t0

1
p(s)

∫ ∞

s
q(r)drds < ∞. (3.2)

Remark 3.1. Assumption (3.1) and 1/p ∈ L1(t0, ∞) imply (3.2). However, we can work here
also with 1/p 6∈ L1(t0, ∞).

Theorem 3.2 (Existence of solution). Assume (3.1) and (3.2), and let θ(t) be a solution of equation
(1.3). If

−∞ < lim inf
t→∞

θ(t) ≤ lim sup
t→∞

θ(t) < ∞, (3.3)

then the main equation (1.1) has a positive solution x(t) such that

0 < lim inf
t→∞

x(t) ≤ lim sup
t→∞

x(t) < ∞. (3.4)

Moreover,
lim inf

t→∞
θ(t) < lim sup

t→∞
θ(t) implies lim inf

t→∞
x(t) < lim sup

t→∞
x(t).
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Example 3.3. The coefficients p(t) = ta and q(t) = t−b of the equation (1.4) also satisfy
required conditions (3.1) and (3.2) provided b > 1 and a + b > 2. Moreover, if

e(t) = t−2+a+γ
[
2(aγ + γ2 − γ) + ω(a + 2γ− 1) cos(ω ln t)

+ (aγ−ω2 + γ2 − γ) sin(ω ln t)
]
+

1
tb−γ

(2 + sin(ω ln t)),

where ω > 0, −
√

3
3 ω < γ ≤ 0, a > 1 and a + b > 2 + γ, then by (2.7),

θ(t) = c1 + tγ
(
2 + sin(ω ln t)

)
+

c2

ta−1 +
1

ta+b−2−γ

[
C1 cos(ω ln t) + C2 sin(ω ln t) + C3

]
,

where the real constants C1, C2 and C3 only depend on parameters ω, γ, a and b. It follows
that (3.3) is satisfied. On the other hand, x(t) = tγ

(
2 + sin(ω ln t)

)
is an exact non-monotone

non-periodic positive bounded solution of the equation (1.4) with above e(t) such that x(t)
satisfies (3.4).

We can observe now that the coefficients p(t) = ta and q(t) = t−b of equation (1.4) simul-
taneously satisfy the required assumptions (2.2), (3.1) and (3.2) provided a > 1 and b > 1. In
fact, in Section 2 it is mentioned that (2.2) holds if a > 1 and a + b > 2, and in the previous
example, it is mentioned that (3.1) and (3.2) hold if b > 1 and a + b > 2. These together imply
a > 1 and b > 1.

Proof of Theorem 3.2. According to (3.3), there exist t1 ≥ t0, δ1 > 0 and δ2 > 0 such that

−δ1 ≤ θ(t) ≤ δ2, t ≥ t1.

Because of (3.1), we can take t2 ≥ t1 so large that∫ ∞

t2

1
p(s)

∫ ∞

s
q(r)drds ≤ 1

δ1 + δ2 + 2
. (3.5)

Let
Y = {y ∈ C[t2, ∞) : δ1 + 1 ≤ y(t) ≤ δ1 + 2 for t ≥ t2}.

Define the mapping F : Y −→ C[t2, ∞) by

(Fy)(t) = δ1 + 1 +
∫ t

t2

1
p(s)

∫ ∞

s
q(r)[y(r) + θ(r)]drds, t ≥ t2.

If y ∈ Y, then
1 ≤ y(t) + θ(t) ≤ δ1 + δ2 + 2, t ≥ t2. (3.6)

Hence, by (3.5), we find that

δ1 + 1 ≤ (Fy)(t) ≤ δ1 + 1 + (δ1 + δ2 + 2)
∫ t

t2

1
p(s)

∫ ∞

s
q(r)drds ≤ δ1 + 2

for t ≥ t2, which implies that F is well defined on Y and maps Y into itself. Here and
hereafter, C[t2, ∞) is regarded as the Fréchet space of all continuous functions on [t2, ∞) with
the topology of uniform convergence on every compact subinterval of [t2, ∞). Lebesgue’s
dominated convergence theorem shows that F is continuous on Y.



Non-monotone positive solutions 15

Now we claim that F (Y) is relatively compact. We note that F (Y) is uniformly bounded
on every compact subinterval of [t2, ∞), because of F (Y) ⊂ Y. By the Ascoli–Arzelà theorem,
it suffices to verify that F (Y) is equicontinuous on every compact subinterval of [t2, ∞). From
(3.6) it follows that

|(Fy)′(t)| ≤ 1
p(t)

∫ ∞

t
q(s)[y(s) + θ(s)]ds ≤ δ1 + δ2 + 2

p(t)

∫ ∞

t
q(s)ds

for t ≥ t2. Let I be an arbitrary compact subinterval of [t2, ∞). Then we see that {(Fy)′(t) :
y ∈ Y} is uniformly bounded on I, because of (3.1) and Remark 3.1. The mean value theorem
implies that F (Y) is equicontinuous on I.

Now we are ready to apply the Schauder–Tychonoff fixed point theorem to the mapping F .
Then there exists a y∗ ∈ Y such that y∗ = Fy∗. Therefore, limt→∞ y∗(t) = limt→∞(Fy∗)(t) = c
for some c ∈ [δ1 + 1, δ1 + 2]. Set

x∗(t) = y∗(t) + θ(t), t ≥ t2.

Then it is easy to check that x∗ is a solution of (1.1) on [t2, ∞) and (3.6) implies

1 ≤ x∗(t) ≤ δ1 + δ2 + 2, t ≥ t2

and hence
0 < lim inf

t→∞
x∗(t) < lim sup

t→∞
x∗(t) < ∞,

provided lim inft→∞ θ(t) 6= lim supt→∞ θ(t). The proof is complete.

Theorem 3.4. Assume that (2.14), (3.1), and (3.2) hold and let θ(t) be a solution of equation (1.3)
such that

−∞ < lim inf
t→∞

θ(t)
P(t)

< lim sup
t→∞

θ(t)
P(t)

< ∞. (3.7)

Then equation (1.1) has a positive solution x(t) such that

0 < lim inf
t→∞

x(t)
P(t)

< lim sup
t→∞

x(t)
P(t)

< ∞. (3.8)

Moreover, if additionally assume (2.17) and θ(t) satisfies (2.21), then x(t) is a non-monotone positive
solution of equation (1.1).

Proof of Theorem 3.4. There exist t1 > t0, δ1 > 0 and δ2 > 0 such that

−δ1 ≤
θ(t)
P(t)

≤ δ2, t ≥ t1.

We take t2 ≥ t1 so large that∫ ∞

t2

1
p(s)

∫ ∞

s
q(r)drds ≤ δ1 + 1

(δ1 + δ2 + 3)(δ1 + 2)
. (3.9)

Set

P2(t) =
∫ t

t2

1
p(s)

ds.
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By L’Hospital’s rule, we have

lim
t→∞

(δ1 + 2)P2(t)
(δ1 + 1)P(t)

=
δ1 + 2
δ1 + 1

> 1.

Hence there exists t3 > t2 such that

(δ1 + 1)P(t) < (δ1 + 2)P2(t), t ≥ t3. (3.10)

Let
Y = {y ∈ C[t3, ∞) : (δ1 + 1)P(t) ≤ y(t) ≤ (δ1 + 3)P2(t) for t ≥ t3}.

Define the mapping F : Y −→ C[t3, ∞) by

(Fy)(t) = (δ1 + 1)P(t) +
∫ t

t2

1
p(s)

∫ ∞

s
q(r)[y(r) + θ(r)]drds, t ≥ t3.

If y ∈ Y, then
y(t) + θ(t) ≥ P(t) > 0, t ≥ t3 (3.11)

and, by (3.10),

y(t) + θ(t) ≤ (δ1 + 3)P2(t) + δ2P(t) (3.12)

≤ (δ1 + 3)P2(t) +
δ2(δ1 + 2)

δ1 + 1
P2(t)

≤ (δ1 + 3)(δ1 + 1) + δ2(δ1 + 2)
δ1 + 1

P2(t)

≤ (δ1 + 3)(δ1 + 2) + δ2(δ1 + 2)
δ1 + 1

P2(t)

=
(δ1 + δ2 + 3)(δ1 + 2)

δ1 + 1
P2(t), t ≥ t3.

Hence we have
(Fy)(t) ≥ (δ1 + 1)P(t) (3.13)

and

(Fy)(t) ≤ (δ1 + 1)P(t) +
(δ1 + δ2 + 3)(δ1 + 2)

δ1 + 1

∫ t

t2

1
p(s)

∫ ∞

s
q(r)P2(r)drds (3.14)

for t ≥ t3. From (3.9) it follows that∫ ∞

s
q(r)P2(r)dr =

∫ ∞

s
q(r)

∫ r

t2

1
p(u)

dudr

≤
∫ ∞

t2

q(r)
∫ r

t2

1
p(u)

dudr

=
∫ ∞

t2

1
p(u)

∫ ∞

u
q(r)drdu

≤ δ1 + 1
(δ1 + δ2 + 3)(δ1 + 2)

, s ∈ [t2, t].

Therefore, (3.10) and (3.14) imply that

(Fy)(t) ≤ (δ1 + 1)P(t) + P2(t)

≤ (δ1 + 2)P2(t) + P2(t) = (δ1 + 3)P2(t), t ≥ t3.
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Therefore, F is well defined on Y and maps Y into itself. By the same argument as in the proof
of Theorem 3.2, we can conclude that F is continuous on Y and F (Y) is relatively compact.
By applying the Schauder–Tychonoff fixed point theorem to the mapping F , there exists a
y∗ ∈ Y such that y∗ = Fy∗. By L’Hospital’s rule, we observe that

lim
t→∞

y∗(t)
P(t)

= lim
t→∞

(Fy∗)(t)
P(t)

= lim
t→∞

(Fy∗)′(t)
P′(t)

= lim
t→∞

(
δ1 + 1 +

∫ ∞

t
q(r)[y∗(r) + θ(r)]dr

)
= c

for some constant c ≥ δ1 + 1. Set

x∗(t) = y∗(t) + θ(t), t ≥ t2. (3.15)

Then it is easy to check that x∗ is a solution of (1.1). From (3.11) and (3.12) it follows that

P(t) ≤ x∗(t) ≤
(δ1 + δ2 + 3)(δ1 + 2)

δ1 + 1
P2(t), t ≥ t3

and

0 < lim inf
t→∞

x∗(t)
P(t)

≤ lim sup
t→∞

x∗(t)
P(t)

< ∞, (3.16)

since

lim
t→∞

P2(t)
P(t)

= lim
t→∞

P′2(t)
P′(t)

= 1.

From assumption (3.7) and inequality (3.16), we easily derive the desired inequality (3.8).
Finally we assume (2.21). Since

x∗(t) = P(t)
(

y∗(t)
P(t)

+
θ(t)
P(t)

)
,

we have

x′∗(t) = P′(t)
(

y∗(t)
P(t)

+
θ(t)
P(t)

)
+ P(t)

(
y∗(t)
P(t)

+
θ(t)
P(t)

)′
and hence

x′∗(t)
P(t)

=
1

p(t)P(t)
x∗(t)
P(t)

+

(
y∗(t)
P(t)

)′
+

(
θ(t)
P(t)

)′
. (3.17)

Since x∗(t)/P(t) is bounded and limt→∞ p(t)P(t) = ∞, we have

lim
t→∞

1
p(t)P(t)

x∗(t)
P(t)

= 0. (3.18)

We claim that

lim
t→∞

(
y∗(t)
P(t)

)′
= 0. (3.19)

We observe that(
y∗(t)
P(t)

)′
=

(
(Fy∗)(t)

P(t)

)′
=

1
p(t)P(t)

(∫ ∞

t
q(r)x∗(r)dr− 1

P(t)

∫ t

t2

1
p(s)

∫ ∞

s
q(r)x∗(r)drds

)
.
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L’Hospital’s rule implies

lim
t→∞

1
P(t)

∫ t

t2

1
p(s)

∫ ∞

s
q(r)x∗(r)drds = lim

t→∞

∫ ∞

t
q(r)x∗(r)dr = 0.

Since limt→∞ p(t)P(t) = ∞, we have (3.19) as claimed. Combining (3.17)–(3.19) with (2.21), we
conclude that

lim inf
t→∞

x′∗(t)
P(t)

= lim inf
t→∞

(
θ(t)
P(t)

)′
< 0 < lim sup

t→∞

(
θ(t)
P(t)

)′
= lim sup

t→∞

x′∗(t)
P(t)

,

which means that x′∗(t) is a sign-changing function, and thus, x∗(t) is a non-monotone positive
solution of (1.1). The proof is complete.

4 Nonexistence of positive non-monotone solutions

Theorem 4.1. Assume that

lim inf
t→∞

1
P(t)

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds = −∞.

Then (1.1) has no any positive solution. In particular, (1.1) has no any positive non-monotone solution.

Proof. Assume, to the contrary, that there exists a solution x(t) of (1.1) such that x(t) > 0 on
[t1, ∞) for some t1 ≥ t0. Integrating (1.1) on [t0, t], we have

p(t)x′(t) = p(t0)x′(t0)−
∫ t

t0

q(r)x(r)dr +
∫ t

t0

e(r)dr

= C1 −
∫ t

t1

q(r)x(r)dr +
∫ t

t0

e(r)dr, t ≥ t0,

where

C1 = p(t0)x′(t0)−
∫ t1

t0

q(r)x(r)dr.

Therefore,

x′(t) =
C1

p(t)
− 1

p(t)

∫ t

t1

q(r)x(r)dr +
1

p(t)

∫ t

t0

e(r)dr, t ≥ t0. (4.1)

Integrating (4.1) on [t0, t], we have

0 < x(t) = x(t0) + C1P(t)−
∫ t

t0

1
p(s)

∫ s

t1

q(r)x(r)drds

+
∫ t

t0

1
p(s)

∫ s

t0

e(r)drds

= C2 + C1P(t)−
∫ t

t1

1
p(s)

∫ s

t1

q(r)x(r)drds

+
∫ t

t0

1
p(s)

∫ s

t0

e(r)drds

≤ C2 + C1P(t) +
∫ t

t0

1
p(s)

∫ s

t0

e(r)drds, t ≥ t1,
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where

C2 = x(t0)−
∫ t1

t0

1
p(s)

∫ s

t1

q(r)x(r)drds.

Hence we obtain
1

P(t)

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds ≥ − C2

P(t)
− C1, t ≥ t1.

Since 1/P(t) is positive and decreasing on (t0, ∞), there exists the limit

lim
t→∞

1
P(t)

∈ [0, ∞),

which implies that
1

P(t)

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds ≥ C3, t ≥ t1

for some constant C3. This is a contradiction.

As a consequence of Theorem 4.1, we derive two useful criteria for the nonexistence of
non-monotone positive solution.

Corollary 4.2. Let θ(t) be a solution of equation (1.3).

i) If

lim inf
t→∞

θ(t)
P(t)

= −∞,

then (1.1) has no positive solution.

ii) If

lim
t→∞

1
P(t)

> 0 and lim inf
t→∞

θ(t) = −∞,

then (1.1) has no positive solution.

In particular, in both cases, (1.1) has no positive non-monotone solution.

Proof. Since 1/P(t) is decreasing, we have 1/P(t) is bounded from above and according to
(1.3), we obtain:

1
P(t)

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds =
1

P(t)

∫ t

t0

1
p(s)

∫ s

t0

(
p(r)θ′(r)

)′drds

=
θ(t)
P(t)

− θ(t0)

P(t)
− p(t0)θ

′(t0)

≤ θ(t)
P(t)

+ C2 for all t ≥ t0,

where the constant C2 > 0. Taking the limit inferior on both sides of previous inequality and
using the assumption in i), we obtain:

lim inf
t→∞

1
P(t)

∫ t

t0

1
p(s)

∫ s

t0

e(r)drds ≤ lim inf
t→∞

( θ(t)
P(t)

+ C2

)
= lim inf

t→∞

θ(t)
P(t)

+ C2

= −∞.
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Now, we see that the main assumption of Theorem 4.1 is satisfied and therefore, Theorem 4.1
proves the first part of this corollary. Next, according to the assumptions in ii), we have:

lim inf
t→∞

θ(t)
P(t)

= lim
t→∞

1
P(t)

lim inf
t→∞

θ(t) = −∞,

and hence, i) proves ii), that is, ii) is a particular case of i).

Both cases of the previous corollary will be illustrated in the next two examples.

Example 4.3. Let a = 1, b = 2 and

e(t) =
4 ln t

t
cos(ln t) +

(
2
t
+

ln2 t
t2 −

ln2 t
t

)
sin(ln t). (4.2)

Since p(t) = t and P(t) = ln t− ln t0, we have 1/P(t) → 0 as t → ∞ and thus, we are dealing
with the first case of Corollary 4.2. Next, from (2.7) and (4.2), we obtain

θ(t) = ln2 t sin(ln t) + c1 ln t + c2 +
1
2t
[

ln t(ln t + 2) cos(ln t)− (3 + 2 ln t) sin(ln t)
]
,

and

lim inf
t→∞

θ(t)
P(t)

= c1 + lim inf
t→∞

[
ln t sin(ln t)

]
= −∞.

Therefore, we may use Corollary 4.2 (i) and conclude that equation (1.4) with such a, b and
e(t), has no any positive solution. Moreover, it is clear that the function x(t) = ln2 t sin(ln t)
is an exact oscillatory (non-positive) solution of (1.4).

Example 4.4. Let a = 2, b = 1 and

e(t) = tγ
[
(2γ + 1) cos(ln t) +

(
γ2 + γ− 1 +

1
t

)
sin(ln t)

]
, (4.3)

where γ > 0. From (2.7) and (4.3), we have

θ(t) = tγ sin(ln t) + c1 +
c2

t
+ tγ−1[C1 cos(ln t) + C2 sin(ln t)

]
, (4.4)

where c1, c2 ∈ R and the real constants C1, C2 only depend on γ. Since p(t) = t2, it is clear
that

P(t) =
t− t0

t0t
and lim

t→∞

1
P(t)

= t0 > 0. (4.5)

Since γ > 0 and γ > γ− 1, from (4.4), it follows:

lim inf
t→∞

θ(t) = c1 + lim inf
t→∞

[
tγ sin(ln t) +

√
C2

1 + C2
2 tγ−1 sin(ln t + C3)

]
= −∞,

which together with (4.5) and Corollary 4.2 (ii) prove that equation (1.4) has no any positive so-
lution. Moreover, the function x(t) = tγ sin(ln t) is an exact oscillatory (non-positive) solution
of (1.4) with such a, b and e(t).

Theorem 4.5. Assume that (2.14) holds and θ be a solution of equation (1.3) such that θ(t) is not
eventually positive and

lim inf
t→∞

θ(t) = 0. (4.6)

Assume moreover that there exists λ ∈ (0, 1) such that every solution of the equation

(p(t)x′)′ + λq(t)x = 0 (4.7)

is oscillatory. Then (1.1) has no positive solution. In particular, (1.1) has no positive non-monotone
solution.
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To prove Theorem 4.5, we need the following well-known result.

Lemma 4.6. If
(p(t)y′)′ + q(t)y ≤ 0 (4.8)

has an eventually positive solution, then so is

(p(t)x′)′ + q(t)x = 0. (4.9)

For the proof of Lemma 4.6, see for example Onose [12].

Proof of Theorem 4.5. Assume, to the contrary, that there exists a solution x(t) of (1.1) such that
x(t) > 0 on [t1, ∞) for some t1 ≥ t0. Set y(t) = x(t)− θ(t). Then

(p(t)y′(t))′ = −q(t)x(t) < 0, t ≥ t1,

which implies that p(t)y′(t) is decreasing on [t1, ∞). Hence, either the following (i) or (ii)
holds: (i) p(t)y′(t) ≥ 0 on [t1, ∞); (ii) p(t)y′(t) < 0 on [t2, ∞) for some t2 ≥ t1. Assume that
(ii) holds. Since p(t)y′(t) is decreasing and negative on [t2, ∞), we find that

p(t)y′(t) ≤ p(t2)y′(t2) < 0, t ≥ t2,

that is,

y′(t) ≤ p(t2)y′(t2)

p(t)
, t ≥ t2. (4.10)

Integrating (4.10) on [t2, t], we have

y(t) ≤ y(t2) + p(t2)y′(t2)
∫ t

t2

1
p(s)

ds.

Letting t → ∞, by (2.14), we have limt→∞ y(t) = −∞. On the other hand, since y(t) =

x(t)− θ(t) > −θ(t) on [t1, ∞), and hence

lim sup
t→∞

y(t) ≥ − lim inf
t→∞

θ(t) = 0, (4.11)

which is a contradiction, and hence (i) holds.
From (i) it follows that y′(t) ≥ 0 for t ≥ t1, which means that y(t) is nondecreasing on

[t1, ∞). Therefore, either y(t) > 0 on [t3, ∞) for some t3 ≥ t1 or y(t) ≤ 0 on [t1, ∞). If y(t) ≤ 0
on [t1, ∞), then

θ(t) ≥ y(t) + θ(t) = x(t) > 0, t ≥ t1,

which contradicts the fact that θ(t) is not positive, and hence y(t) > 0 on [t3, ∞) for some
t3 ≥ t1. Since lim inft→∞ θ(t) = 0, there exists t4 ≥ t3 such that

θ(t) ≥ −(1− λ)y(t3), t ≥ t4.

Since y(t) ≥ y(t3) for t ≥ t4, we have

θ(t) ≥ −(1− λ)y(t), t ≥ t4,

which implies

x(t) = y(t) + θ(t) ≥ y(t)− (1− λ)y(t) = λy(t), t ≥ t4.

Therefore y(t) is a positive solution of

(p(t)y′(t))′ + λq(t)y(t) ≤ 0, t ≥ t4.

Lemma 4.6 implies that (4.7) also has a positive solution. This is a contradiction.
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The following result is well-known as the Leighton–Winter oscillation criterion and the
Hille oscillation criterion. See, for example, [17].

Lemma 4.7. Assume that (2.14) holds. Then every solution of (4.9) is oscillatory if either∫ ∞

t0

q(t)dt = ∞ (4.12)

or (3.1) holds and

lim inf
t→∞

P(t)
∫ ∞

t
q(s)ds >

1
4

. (4.13)

Corollary 4.8. Let (2.14) hold and θ be a solution of equation (1.3) such that θ(t) is not eventually
positive and satisfies (4.6). Assume that either (4.12) holds or (3.1) and (4.13) hold. Then (1.1) has no
eventually positive solution. In particular, (1.1) has no positive non-monotone solution.

Proof. Assume that

lim
t→∞

f (t) >
1
4

.

for some f ∈ C(t0, ∞). Then there exists a constant c such that

lim
t→∞

f (t) > c >
1
4

.

We can take λ ∈ (0, 1) such that λc > 1/4, and hence

lim
t→∞

λ f (t) > λc >
1
4

.

Therefore, Theorem 4.5 and Lemma 4.7 imply Corollary 4.8.

5 Some open questions

5.1 Euler type equations

According to considerations from Remarks 2.10 and 2.18 about the Euler type equation (2.12),
we are able to pose the next question:

Open Question 5.1. Find sufficient conditions on µ ∈ R, λ > 0 and continuous function f (t)
such that every positive solution x(t) of the Euler type equation (2.12) is a non-monotone function on
[t0, ∞).

5.2 Non-monotone positive solutions and upper-lower solutions technique

We start this subsection with the next classic definition: arbitrary two functions α = α(t),
α ∈ C2 and β = β(t), β ∈ C2 are said to be respectively the lower and upper solutions of
equation (1.1) if the following inequalities are satisfied:(

p(t)α′
)′
+ q(t)α ≥ e(t), t > t0, (5.1)(

p(t)β′
)′
+ q(t)β ≤ e(t), t > t0. (5.2)

Here we suppose that lower and upper solutions of equation (1.1) are well-ordered, that is,

α(t) ≤ β(t), t ≥ t0.
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About the method of lower and upper solutions method in the second-order differential equa-
tions we refer reader to [8]. The next principle gives the relation between the well-ordered
lower and upper solutions with the reverse-ordered first derivatives.

Lemma 5.1. If α(t) and β(t) are well-ordered lower and upper solutions of equation (1.1) such that

α′(t0) ≥ β′(t0), (5.3)

then α′(t) and β′(t) are reverse-ordered, that is,

α′(t) ≥ β′(t), t ≥ t0.

Proof. From (5.1) and (5.2) we derive:(
p(t)α′

)′
+ q(t)α ≥

(
p(t)β′

)′
+ q(t)β,

which together with (5.2) gives:(
p(t)(α′(t)− β′(t))

)′ ≥ q(t)(β(t)− α(t)) ≥ 0, t > t0.

Integrating this inequality and using (5.3), we obtain

p(t)(α′(t)− β′(t)) ≥ p(t0)(α
′(t0)− β′(t0)) ≥ 0, t > t0,

which proves that α′(t) ≥ β′(t), t ≥ t0.

Such a comparison principle can be proved for solutions of equation (1.1).

Theorem 5.2. Let α(t) and β(t) be the well-ordered lower and upper solutions of equation (1.1)
satisfying (5.3). If a solution x(t) of equation (1.1) satisfies{

α(t) ≤ x(t) ≤ β(t), t ≥ t0,

α′(t0) ≥ x′(t0) ≥ β′(t0),
(5.4)

then
α′(t) ≥ x′(t) ≥ β′(t), t ≥ t0. (5.5)

As a consequence we easily derive the following criterion for non-monotonicity of solu-
tions.

Corollary 5.3 (Criterion for non-monotonicity of a solution). Let α(t) and β(t) be the well-ordered
lower and upper solutions of equation (1.1) satisfying (5.3). If α(t) and β(t) are non-monotonic on
[t0, ∞), then every solution x(t) of equation (1.1) that satisfies (5.4) is also non-monotonic on [t0, ∞).

Proof of Theorem 5.2. Since every solution x(t) of equation (1.1) is an upper solution of (1.1),
Lemma 5.1 and assumption (5.4) imply α′(t) ≥ x′(t). Since x(t) is also a lower solution of
(1.1), Lemma 5.1 and (5.4) again give x′(t) ≥ β′(t).

Proof of Corollary 5.3. From assumption that α(t) and β(t) are two non-monotone functions,
there exist two sequences sn and tn, sn → ∞ and tn → ∞ as t→ ∞, and n0 ∈N such that

α′(sn) < 0 and β′(tn) > 0, n ≥ n0.

Now, taking into account the conclusion (5.5), from previous we derive that

x′(sn) ≤ α′(sn) < 0 and x′(tn) ≥ β′(tn) > 0, n ≥ n0.

It verifies that x′(t) is a sign-changing function, that is, x(t) is a non-monotone function on
[t0, ∞).
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According to the preceding observation, we can pose the following question.

Open Question 5.2. Find concrete classes of functions p(t), q(t) and e(t) such that equation (1.1)
admits exact well-ordered lower and upper non-monotone solutions α(t) and β(t) satisfying (5.3) as
well as an exact non-monotone solution x(t) satisfying (5.4) and (5.5).
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